The Structure of Aliphatic Amine Adducts of Uranyl Acetylacetonate. IV. Dioxobis(2,4-pentanedionato)mono(2-aminopentan-4-one)uranium(VI)

By A. L. Rodgers*
Department of Physiology and Medical Biochemistry, Medical School, University of Cape Town, South Africa
L. R. Nassimbeni, R. A. Pauptit and G. Orpen
Department of Physical Chemistry, University of Cape Town, South Africa

and J. M. Haigh
School of Pharmaceutical Sciences, Rhodes University, Grahamstown, South Africa
(Received 1 March 1977; accepted 2 April 1977)

Abstract

The title compound is orthorhombic with $a=18.129$ (5), $b=7.925$ (5), $c=13.556$ (5) $\dot{A}, Z=4$, space group Pna2. The structure was refined to a final R of 0.055 for 1162 independent reflexions. The U atom has pentagonal bipyramidal coordination and the acetylacetoneamine is bonded to U via O . There are bifurcated inter- and intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Introduction

We have shown in three earlier determinations of aliphatic amine adducts of $\mathrm{UO}_{2}(A A)_{2}$ (part I: Haigh, Nassimbeni, Pauptit, Rodgers \& Sheldrick, 1976; part II: Nassimbeni, Orpen, Pauptit, Rodgers \& Haigh, 1977; part III: Rodgers, Nassimbeni \& Haigh, 1977) that the conformation of the adduct is dependent on its ability to form hydrogen bonds. The present compound has two H atoms available for hydrogen bonding and may be regarded as the parent of the series.

Experimental

The compound was prepared as previously described (Haigh \& Thornton, 1971). A single crystal was ground to a sphere of radius 0.17 mm and the lattice constants were obtained by least squares from the settings of 25 reflexions measured on a four-circle diffractometer with Mo Koradiation ($\lambda=0.71069 \AA$). The crystal data are listed in Table 1. The density was measured by flotation in a mixture of methyl iodide and bromobenzene.

[^0]Table 1. Crystal data

$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{7} \mathrm{U}, M_{r}=567$	$V=1947.62 \AA^{3}$
Space group: Pna2	$D_{m=1}=1.96 \mathrm{~g} \mathrm{~cm}^{-3}$
$a=18 \cdot 129(5) \AA$	$D_{c}=1.93$ for $Z=4$
$b=7.925(5)$	$\mu=79.86 \mathrm{~cm}^{-1}$
$c=13.556(5)$	$F(000)=1072$

$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}, \mathrm{U}, M_{r}=567$
$a=18.129$ (5) \AA
$b=7.925$ (5)
$c=13.556(5)$
$V=1947.62 \AA^{3}$
$D_{m}=1.96 \mathrm{~g} \mathrm{~cm}^{-3}$
$D_{c}=1.93$ for $Z=4$
$F(000)=1072$

Intensities were collected on a Philips PW 1100 computer-controlled four-circle diffractometer operating in the $\omega-2 \theta$ scan mode (scan width $1 \cdot 10^{\circ} \theta$, scan speed $0.04^{\circ} \theta \mathrm{s}^{-1}$). With graphite-monochromated Mo K aradiation, 1588 reflexions up to $2 \theta=46^{\circ}$ were measured. Three reference reflexions were recorded after every 60 reflexions: their intensities remained constant to within $\pm 4 \% .197$ reflexions were excluded as systematicaliy absent and a further 229 were omitted as they did not satisfy the criterion $I_{\text {rel }}>2 \sigma I_{\text {rel }}$. This left 1162 refiexions which were used for the analysis. Lorentz-polarization corrections were applied but absorption was ignored.

Solution and refinement of the structure

The U atom was located from a Patterson map and all the non-H atoms were found in a subsequent difference map. Refinement, in which only U was treated anisotropically, yielded an R of 0.063 . At this stage a difference map revealed the positions of 15 of the H atoms including $\mathrm{H}(1)$ and $\mathrm{H}(2)$ which are involved in hydrogen bonding. Accordingly, the positional parameters of $H(1)$ and $H(2)$ were refined independently, while the other H atoms were constrained to be $1.08 \AA$ from their parent C atoms, their positions being dictated by the geometry of the molecule. The methyl H atoms were refined as rigid groups. The isotropic temperature factors of the methyl and methine H atoms were refined as two single parameters with final U values of 0.12 and $0.11 \AA^{2}$
A. L. RODGERS, L. R. NASSIMBENI, R. A. PAUPTIT, G. ORPEN AND J. M. HAIGH 3111

Table 2. Fractional atomic coordinates of all nonhydrogen atoms and their e.s.d.'s $\left(\times 10^{3}\right)$ and temperature factors $\left(\AA^{2} \times 10^{3}\right)$

	x	y	z	U
U	$839(0)$	$954(0)$	$750(0)^{*}$	\dagger
$\mathrm{O}(1)$	$766(1)$	$862(3)$	$696(2)$	$53(6)$
$\mathrm{O}(2)$	$913(1)$	$1051(3)$	$806(2)$	$59(6)$
$\mathrm{O}(3)$	$789(1)$	$1212(3)$	$692(2)$	$46(5)$
$\mathrm{O}(4)$	$752(1)$	$1061(3)$	$862(2)$	$55(6)$
$\mathrm{O}(5)$	$831(1)$	$750(3)$	$880(2)$	$65(7)$
$\mathrm{O}(6)$	$912(2)$	$724(3)$	$709(2)$	$78(8)$
$\mathrm{O}(7)$	$899(1)$	$1038(3)$	$601(2)$	$53(6)$
$\mathrm{C}(1)$	$723(2)$	$1452(3)$	$642(3)$	$64(9)$
$\mathrm{C}(2)$	$737(2)$	$1308(4)$	$709(2)$	$48(9)$
$\mathrm{C}(3)$	$694(2)$	$1296(5)$	$794(3)$	$62(11)$
$\mathrm{C}(4)$	$703(2)$	$1166(5)$	$866(3)$	$62(10)$
$\mathrm{C}(5)$	$653(2)$	$1180(5)$	$953(3)$	$73(12)$
$\mathrm{C}(6)$	$835(2)$	$526(5)$	$996(3)$	$76(11)$
$\mathrm{C}(7)$	$860(2)$	$608(5)$	$896(3)$	$64(10)$
$\mathrm{C}(8)$	$901(2)$	$512(5)$	$828(3)$	$64(11)$
$\mathrm{C}(9)$	$923(2)$	$576(4)$	$742(5)$	$57(8)$
$\mathrm{C}(10)$	$966(2)$	$496(5)$	$674(3)$	$68(10)$
$\mathrm{C}(11)$	$102(2)$	$952(6)$	$578(3)$	$74(11)$
$\mathrm{C}(12)$	$955(2)$	$1039(5)$	$548(3)$	$51(8)$
$\mathrm{C}(13)$	$953(2)$	$1123(4)$	$454(3)$	$46(8)$
$\mathrm{C}(14)$	$893(2)$	$1204(4)$	$415(2)$	$41(8)$
$\mathrm{C}(15)$	$898(2)$	$1288(5)$	$312(3)$	$64(10)$
N	$829(2)$	$1224(4)$	$462(2)$	$52(7)$

[^1]Table 3. Fractional atomic coordinates of the hydrogen atoms and their e.s.d.'s $\left(\times 10^{3}\right)$

	Bonded to	x	y	- z
H(1)	N	783 (9)	1283 (26)	424 (15)
H(2)	N	816 (18)	1190 (37)	538 (10)
H(3)	C(3)	652 (2)	1390 (5)	806 (3)
H(8)	C(8)	915 (2)	383 (5)	846 (3)
H(11)		676 (2)	1523 (5)	668 (3)
H(12)	C(1)	712 (2)	1406 (5)	569 (3)
H(13)		771 (2)	1533 (5)	641 (3)
H(51)		614 (2)	1280 (5)	941 (3)
H(52)	C(5)	685 (2)	1206 (5)	1018 (3)
H(53)		624 (2)	1062 (5)	963 (3)
H(61)		862 (2)	405 (5)	1004 (3)
H(62)	C(6)	776 (2)	508 (5)	995 (3)
H(63)		851 ¡2)	607 (5)	1056 (3)
H(101)		982 (2)	507 (5)	606 (3)
H(102)	C(10)	931 (2)	339 (5)	658 (3)
H(103)		1015 (2)	404 (5)	712 (3)
H(111)		1064 (2)	967 (6)	522 (3)
H(112)	C(11)	1010 (2)	820 (6)	589 (3)
H(113)		1041 (2)	1006 (6)	647 (3)
H(131)	C(13)	1003 (2)	1122 (4)	411 (3)
H(151)		952 (2)	1265 (5)	281 (3)
H(152)	C(15)	889 (2)	1423 (5)	320 (3)
H(153)		856 (2)	1236 (5)	265 (3)

respectively while the final U values for $\mathrm{H}(1)$ and $\mathrm{H}(2)$ were 0.03 and $0.08 \AA^{2}$ respectively.

After the final cycle R was 0.055 and $R_{w} 0.054$ with $w=1 / \sigma^{2}$. A final difference map had no peaks $>0.86 \mathrm{e}$ \AA^{-3}. The final atomic parameters are listed in Tables 2 and 3 .*

All computations were performed at the computer centre of the University of Cape Town on a Univac 1106 computer with SHELX (Sheldrick, 1977).

Description of the structure

The molecular structure and atomic nomenclature are shown in Fig. 1. The principal bond lengths and angles are given in Tables 4 and 5 respectively. Table 6 lists computed least-squares planes with the distances of various atoms from these planes.

The β-ketoamine coordinates through O , and the U atom exhibits pentagonal bipyramidal coordination. $\mathrm{H}(2)$ is involved in two intramolecular hydrogen bonds. The $\mathrm{N}-\mathrm{H}(2) \cdots \mathrm{O}(7)$ interaction causes the ligand to adopt a ring-like structure and to exhibit pseudo-

[^2]Table 4. Bond lengths (A)

$\mathrm{U}-\mathrm{O}(1)$	$1.68(2)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.39(4)$
$\mathrm{U}-\mathrm{O}(2)$	$1.72(2)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.43(5)$
$\mathrm{U}-\mathrm{O}(3)$	$2.37(2)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.49(5)$
$\mathrm{U}-\mathrm{O}(4)$	$2.34(2)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.57(5)$
$\mathrm{U}-\mathrm{O}(5)$	$2.40(3)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.41(5)$
$\mathrm{U}-\mathrm{O}(6)$	$2.31(3)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.33(8)$
$\mathrm{U}-\mathrm{O}(7)$	$2.39(2)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.59(6)$
$\mathrm{O}(3)-\mathrm{C}(2)$	$1.24(4)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.45(5)$
$\mathrm{O}(4)-\mathrm{C}(4)$	$1.23(4)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.43(5)$
$\mathrm{O}(5)-\mathrm{C}(7)$	$1.26(4)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.36(4)$
$\mathrm{O}(6)-\mathrm{C}(9)$			
$\mathrm{O}(7)-\mathrm{C}(12)$			
$\mathrm{C}(1)-\mathrm{C}(2)$			

Fig. 1. Perspective view of the molecule with atomic nomenclature.

Fig. 2. Molecule viewed along $\mathrm{O}(3)-\mathrm{U}-\mathrm{O}(6)$ bisector. H atoms have been omitted.

Fig. 3. Intermolecular hydrogen bonding.
aromaticity as evidenced by its planarity (plane 4 , Table 6). The $\mathrm{N}-\mathrm{H}(2) \cdots \mathrm{O}(3)$ bond orients the plane of the ligand at the relatively small angle of 33.1° to the plane defined by the five equatorial O atoms (intersection of planes 1 and 4 , Table 6). In part I the same effect is observed with the intersection angle 32.0°. The intersection of these planes is illustrated in Fig. 2 which views the complex along the bisector of the $\mathrm{O}(3)-\mathrm{U}-\mathrm{O}(6)$ angle. Each acetylacetone ring is slightly folded about an axis through its O atoms making angles of 8.3 and 4.2°.

Intermolecular hydrogen bonding is also present. The interactions between $\mathrm{H}(1)$ and $\mathrm{O}\left(4^{\mathrm{i}}\right)$ and $\mathrm{H}(1)$ and $O\left(5^{i}\right)$ link symmetry-related molecules in corrugated chains along the n glide in directions parallel to the diagonals of the $b c$ face of the cell. The intermolecular hydrogen bonding is shown in Fig. 3, and the relevant bond lengths and angles are in Table 7.

Table 5. Bond angles $\left({ }^{\circ}\right)$

$\mathrm{O}(1)-\mathrm{U}-\mathrm{O}(2)$	$179(1)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	$123(4)$
$\mathrm{O}(1)-\mathrm{U}-\mathrm{O}(3)$	$86(1)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$115(4)$
$\mathrm{O}(1)-\mathrm{U}-\mathrm{O}(4)$	$85(1)$	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	$122(4)$
$\mathrm{O}(1)-\mathrm{U}-\mathrm{O}(5)$	$89(1)$	$\mathrm{C}(4)-\mathrm{O}(4)-\mathrm{U}$	$140(2)$
$\mathrm{O}(1)-\mathrm{U}-\mathrm{O}(6)$	$90(1)$	$\mathrm{U}-\mathrm{O}(5)-\mathrm{C}(7)$	$135(3)$
$\mathrm{O}(1)-\mathrm{U}-\mathrm{O}(7)$	$97(1)$	$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(8)$	$127(4)$
$\mathrm{O}(2)-\mathrm{U}-\mathrm{O}(3)$	$93(1)$	$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(6)$	$114(3)$
$\mathrm{O}(2)-\mathrm{U}-\mathrm{O}(4)$	$94(1)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$119(3)$
$\mathrm{O}(2)-\mathrm{U}-\mathrm{O}(5)$	$91(1)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$121(4)$
$\mathrm{O}(2)-\mathrm{U}-\mathrm{O}(6)$	$91(1)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(6)$	$128(5)$
$\mathrm{O}(2)-\mathrm{U}-\mathrm{O}(7)$	$84(1)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$114(3)$
$\mathrm{O}(3)-\mathrm{U}-\mathrm{O}(4)$	$69(1)$	$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(10)$	$118(5)$
$\mathrm{O}(4)-\mathrm{U}-\mathrm{O}(5)$	$74(1)$	$\mathrm{C}(9)-\mathrm{O}(6)-\mathrm{U}$	$137(3)$
$\mathrm{O}(5)-\mathrm{U}-\mathrm{O}(6)$	$71(1)$	$\mathrm{U}-\mathrm{O}(7)-\mathrm{C}(12)$	$150(2)$
$\mathrm{O}(6)-\mathrm{U}-\mathrm{O}(7)$	$76(1)$	$\mathrm{O}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	$121(3)$
$\mathrm{O}(7)-\mathrm{U}-\mathrm{O}(3)$	$70(1)$	$\mathrm{O}(7)-\mathrm{C}(12)-\mathrm{C}(13)$	$119(3)$
$\mathrm{U}-\mathrm{O}(3)-\mathrm{C}(2)$	$139(2)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$120(3)$
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(3)$	$123(3)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$126(3)$
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$119(3)$	$\mathrm{C}(3)-\mathrm{C}(14)-\mathrm{N}$	$124(3)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$118(3)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$121(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$124(4)$	$\mathrm{N}-\mathrm{C}(14)-\mathrm{C}(15)$	$115(3)$

(I)

Fig. 4. Molecular structure and $\mathrm{O}(7)-\mathbf{U}$ view of each complex.

Table 6. Least-squares planes and perpendicular distances (\AA) of atoms from them
The equations of the planes are expressed in orthogonalized space as $I X+m Y+n Z=P$. Atoms marked with an asterisk were not included in the least-squares calculation.
$\begin{array}{lcccrr}\text { Plane } 1 & 13.3169 X & 3.6444 Y+6.7638 Z & =4.0257 \\ \mathrm{U} & -0.022 & \mathrm{O}(4) & -0.017 & \mathrm{O}(6) & 0.123 \\ \mathrm{O}(3) & 0.111 & \mathrm{O}(5) & -0.059 & \mathrm{O}(7) & -0.126\end{array}$

Plane 2	$11.3224 X$				
Pl	$4.7828 Y+6.7198 Z=3.4501$				
U^{*}	0.274	$\mathrm{C}(1)^{*}$	-0.073	$\mathrm{C}(4)$	0.019
$\mathrm{O}(3)$	0.001	$\mathrm{C}(2)$	0.008	$\mathrm{C}(5)^{*}$	-0.061

O(4)	-0.010	$\mathrm{C}(3)$	-0.018		
Plane	$14.8201 X$	$2.8970 Y+6.0335 Z$	$=3.8987$		
U^{*}	0.130	$\mathrm{C}(6)^{*}$	-0.158	$\mathrm{C}(9)$	0.032
$\mathrm{O}(5)$	0.047	$\mathrm{C}(7)$	-0.063	$\mathrm{C}(10)^{*}$	0.171
$\mathrm{O}(6)$	-0.036	$\mathrm{C}(8)$	0.020		

Plane $4 \quad 5.8676 X+6.6998 Y+5.7601 Z=2.6170$					
U*	0.078	$\mathrm{C}(12)$	-0.006	C(15)	0.011
O(7)	0.014	C(13)	-0.020	N	-0.014
C(11)	0.004	C(14)	0.011		
Plane 5	$13.1533 X+3.9945 Y+6.3517 Z=3.8905$				
U	0.000	$\mathrm{O}(3)$	0.000	O(4)	0.000
Plane 6	$14 \cdot 1727 X+3.3952 Y+6 \cdot 1421 Z=3.9745$				
U	0.000	$\mathrm{O}(5)$	0.000	O(6)	0.000

Intersection angles (${ }^{\circ}$)

Planes 1 and 4	$33 \cdot 12$
Planes 2 and 5	$8 \cdot 28$
Planes 3 and 6	$4 \cdot 17$

Table 7. Hydrogen bonding

$\mathrm{N}-\mathrm{H}(1)$	1.09 £	$\mathrm{N}-\mathrm{H}(2)$	1.09 A
$\mathrm{N} \cdot \mathrm{}$. (${ }^{(4)}$	$3 \cdot 33$	$\mathrm{N} \cdots \mathrm{O}(3)$	$3 \cdot 20$
$\mathrm{N} \cdot \mathrm{} .\mathrm{O}\left(5^{\text {i }}\right.$)	$3 \cdot 12$	$\mathrm{N} \cdot \mathrm{}$. O(7)	2.71
$\mathrm{H}(1) \cdots \mathrm{O}\left(4^{\text {i }}\right.$)	2.45	$\mathrm{H}(2) \cdots \mathrm{O}(3)$	$2 \cdot 15$
$\mathrm{H}(1) \cdots \mathrm{O}\left(5^{\text {i }}\right.$)	$2 \cdot 17$	$\mathrm{H}(2) \cdots \mathrm{O}$ (7)	$2 \cdot 12$
$\mathrm{N}-\mathrm{H}(1) \cdots \mathrm{O}\left(4^{\text {i }}\right.$)	138.4°	$\mathrm{N}-\mathrm{H}(2) \cdots \mathrm{O}(3)$	161.4°
$\mathrm{N}-\mathrm{H}(1) \cdots \mathrm{O}\left(5^{\text {i }}\right.$)		$\mathrm{N}-\mathrm{H}(2) \cdots \mathrm{O}(7)$	111.3

Discussion

Fig. 4 compares the molecular structures of the four complexes of the series, viewed perpendicular to the equatorial O atoms and along the ligand $\mathrm{O}-\mathrm{U}$ bond. In all four complexes the adduct coordinates through its O rather than its N atom while the U atom displays pentagonal bipyramidal coordination. The conformation of the β-ketoamine ligand is seen to be dependent on its ability to form hydrogen bonds. In those cases where at least one amino H atom is present an intramolecular hydrogen bond with the amino O atom causes the ligand to adopt a ring-like pseudoaromatic structure. Only in part II, where N is disubstituted, is an open-chain structure observed.

The orientation of the ligand plane relative to the plane defined by the five equatorial O atoms is also dependent on hydrogen bonding. In parts I and IV the H atom bonded to the amine O atom is involved in a second hydrogen bond interaction with the vicinal O atom. This causes intersection angles of 32 and 33° respectively. In part III, where the bulky isopropyl substituent probably prevents the formation of the second interaction, the intersection angle is 70°. In the open-chain structure the angle is 48°.

We thank the CSIR (Pretoria) for the diffractometerdata collection and the CSIR and the University of Cape Town for research grants.

References

Haigh, J. M., Nassimbeni, L. R., Pauptit, R. A., Rodgers, A. L. \& Sheldrick, G. M. (1976). Acta Cryst. B32, 1398-1401.
Haigh, J. M. \& Thornton, D. A. (1971). J. Inorg. Nucl. Chem. 33, 1787-1797.
Nassimbeni, L. R., Orpen, G., Pauptit, R. A., Rodgers, A. L. \& Haigh, J. M. (1977). Acta Cryst. B33, 959-962.

Rodgers, A. L., Nassimbeni, L. R. \& Haigh, J. M. (1977). Acta Cryst. B33, 1176-1179.
Sheldrick, G. M. (1977). To be published.

[^0]: * Author to whom correspondence should be addressed

[^1]: * This parameter was held invariant owing to space-group requirements.
 \dagger This was of the form $T=\exp \left[-2 \pi^{2}\left(U_{11} a^{* 2} h^{2}+U_{22} b^{* 2} k^{2}\right.\right.$ $\left.\left.+U_{33} c^{* 2} l^{2}+2 U_{23} b^{*} c^{*} k l+2 U_{13} a^{*} c^{*} h l+2 U_{12} a^{*} b^{*} h k\right)\right]$. The values were $U_{11}=58$ (1), $U_{22}=39$ (1), $U_{33}=30$ (1), $U_{23}=11$ (1), $U_{13}=5(2), U_{12}=8$ (1).

[^2]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32636 (8 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

